High Throughput Pulse-chase Analysis of Metabolite Turnover in THE GEORGE Microorganisms by LAESI Mass Spectrometry

Sylwia A. Stopka,^a Tarek Mansour,^a Bindesh Shrestha,^a Éric Maréchal,^b Denis Falconet,^b and Akos Vertes^a

^aDepartment of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC 20052 ^bLaboratoire de Physiologie Cellulaire Végétale, UMR 5168, CEA-CNRS-INRA-Université Joseph Fourier Grenoble 1, Grenoble, France

INTRODUCTION

UNIVERSITY

WASHINGTON, DC

- Stable isotope pulse-chase analysis followed by mass spectrometry (MS) can provide insight into cellular metabolism kinetics from complex biological systems.
- The ambient ionization source, laser ablation electrospray ionization (LAESI) in combination with gas-phase ion mobility separation (IMS)-MS has demonstrated high-throughput detection of metabolites, lipids, and peptides from microalgae cell populations.¹
- The model organism, *Chlamydomonas reinhardtii* has been extensively studied for its well known lipid metabolism, chlorophyll cycle, and use in biofuel alternatives.
- In this study, pulse-chase analysis in combination with LAESI-IMS-MS was used for the simultaneous and rapid determination of molecular turnover rates and half-lives in live microalgae.

METHODS

- Wild type C. reinhardtii were inoculated in trisacetate phosphate (TAP) medium at 27 °C and 80 RPM with a 12 h light (100 µmol·m⁻²sec⁻¹)/12 h dark cycle.
- In the pulse phase, cells were cultured in ¹⁵Nlabeled TAP medium for 96 h to allow isotope assimilation. The chase phase was initiated when the medium was reverted to unlabeled TAP.

а

 During the chase phase, algae were analyzed using LAESI-IMS-MS at several time points. Briefly, mid-IR laser pulses were focused onto the cell pellet to produce an ablation plume that was subsequently ionized by an electrospray. A traveling-wave IMS equipped TOF-MS detected the isotopolog *m*/z values and drift times (DT). The overall workflow is shown in Figure 1.

Figure 1. Schematic representation of the workflow of pulse-chase analysis with LAESI-IMS-MS for live C. reinhardtii cells.

Figure 2. (a) Representative LAESI mass spectra of *C. reinhardtii* cells cultured in (top) unlabeled-TAP and (bottom) ¹⁵N-TAP media. (b) The growth rates of algae were not affected by the ¹⁵N-labeled isolope. (c) Tandern MS of chiorophyli a isotopologs from *C. reinhardtii* in (left) unlabeled and (right) ¹⁵N-labeled media. Inset shows the structure and fragmentation of chiorophyli a.

ISOTOPOLOG IMS ENHANCEMENT

Figure 3. (a) Isotopolog DT distribution plots of (left) chlorophyll a and (right) a 2.8 kDa peptide from C. *reinhardtii* in unlabeled and "N-habeled media. (b) A difference heat plot, revealing the intensity differences between the ions from (blue) ¹SN-TAP and (red) unlabeled TAP media. Isotopolog doublets (right) in the zoomed plots were observed with similar DT ranges and shifted m² values determined by the number of nitrogen atoms.

RESULTS

Figure 4. (a) Fractional enrichment of the decay for pheophytin $a(\Box)$, chlorophyll $b(\blacktriangle)$, and chlorophyll $a(\Box)$ over time. (b) Chlorophyll a follows first order kinetics during the 72 h chase phase. Similar trends where observed for the other two.

Figure 5. (a) Isotope distribution patterns during a 72 h chase phase for diacylglyceyr) NN.N-trimetryhlomoserines (DGTS) DGTS(18:4/16:0) and DGTS(18:3/16:0). Experimental spectra are shown as black traces and green/blue colors are designated as the unlabeled isotopologs of DGTS(18:4/16:0) and DGTS(18:3/16:0), respectively. The greyrled colors represent the ¹N-labled isotopologs. (b) Fractional enrichment of DGTS(18:3/16:0) ion over a 72 h chase period. (c) Turnover rates and half-lives of lipids detected from C. reinhardtii.

PEPTIDE TURNOVER

Figure 6. (a) LAESI-IMS-MS spectra during a 72 h pulse-chase experiment within the DT range of 60-52 ms, which provided signal enhancement for a 2.8 kDa (4+ charge state) peptide from a C. *reinhardii* tell pellet. (b) Fractional enrichment for the 2.8 kDa peptide in both the +4 and +3 charge state and collision cross sections and half-lives values.

DISCUSSIONS

- Nitrogen isotope assimilation had no effect on cellular growth, and showed spectral features similar to the unlabeled condition (Figure 2).
- Collision cross section (CCS) measurements based on ion mobility separation aided in confirming isotopologs. For example, isotopologs of chlorophyll a ions exhibited the same CCS, but the m/z value was shifted by 4 unites due to the presence of four nitrogen atoms in the molecule. To detect isotopologs, a difference heat plot was constructed, showing doublets. (Figure 3)
- The decomposition kinetics of porphyrins were determined. They followed first-order decay during the 72 h chase phase. The half-life of, chlorophyll *a* was 24.1±2.2 h, chlorophyll *b* was 44.7±1.6 h, and pheophytin *a* was 18.9±2.7 h. (Figure 4)
- The turnover rates and half-lives of lyso-DGTS and DGTS lipids provided a tool for investigating lipid metabolism. (Figure 5)
- Signal enhancement of low concentration isotopolog peptides was observed by introducing IMS. A 2.8 kDa peptide contained 36 nitrogen atoms and had a half-life of 10.9±4.1 h. (Figure 6).

CONCLUSIONS

- Pulse-chase analysis followed by LAESI-IMS-MS demonstrated the feasibility of simultaneous rapid determination of turnover rates and half-lives for metabolites, lipids, and a peptide in a single experiment.
- The enhancements due to IMS allowed for the, separation of isotopologs, detection of low abunadance species, and strenghtening identifications using CCS values.
- This work benefits systems biology and bioengineering, and provides further insight into lipid metabolism in complex biological systems.

ACKNOWLEDGEMENTS

The authors acknowledge financial support from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Grant DE-FG02-01ER15129), Protea Biosciences Group, Inc., and the GW Selective Excellence Fund.

REFERENCES

[1] S. A. Stopka, B. Shrestha, E. Marechal, D. Falconet, A. Vertes, Analyst 2014, 139, 5945-5953.